
The AppleEvent Stream Library

Apple Events The Æ Stream Library
Version 1.0

Jens Peter Alfke
13 August 1991

The AppleEvent Builder/Printer

The AppleEvent Stream Library
User Programming Group
© Apple Computer, Inc. 1991

The AppleEvent Builder/Printer

The AppleEvent Stream Library

The AppleEvent Builder/Printer

The AppleEvent Stream Library

Contents

Contents..iii
Introduction...1

OK, What Is It? 1
What’s In It For Me? 1
Just How Stable Is It, Anyway? 2
What Are All Those Files? 2
Disclaimer 2

AEStream Functions..3
Opening and Closing a Stream 3
Writing Descriptors 3
Writing Lists 5
Writing Records 5
Writing Key Descriptors For Records 6

The Header Files..7
AEStream.h 7
AEStream_CPlus.h 8

The AppleEvent Builder/Printer

The AppleEvent Stream Library
Introduction

OK, What Is It?

The Apple Event Manager routines that assemble descriptors (I speak
here of AECreateDesc, AECreateList, AEPutDesc, et al) provide very flexible random access
at the expense of significant overhead in speed and memory. Constructing nested structures
involves duplicating and copying a whole lot of data. In many cases, programs create
descriptors in a more or less linear fashion, without many common subexpressions. In such
situations you could use a stream-like protocol and speed things up quite a bit.

That’s what the AEStream library does for you. It doesn’t use the Apple Event Manager at all.
Instead, it builds up a single descriptor from beginning to end. The descriptor data stays all in
one block and grows in discrete increments, so there will be far fewer Memory Manager calls.

What’s In It For Me?

The benefits of using this library are threefold:
❉ Sheer, raw speed. It’s about three times as fast as using the
Apple Event Manager routines.
❉ Code that creates nested descriptors in a linear fashion will
be simpler and clearer.
❉ Simpler cleanup; there’s only one stream object, not many
sub-descriptors, to be disposed.

Just How Stable Is It, Anyway?

I’ve tested this code out, and verified it runs reliably on a moderately complex
expression, produces exactly the same descriptors as do the Apple Event

The AppleEvent Builder/Printer

The AppleEvent Stream Library

Manager routines, and has no memory leakage. I did most of this testing by
converting my AEBuild function to use the AEStream library. AEBuild now runs
just as reliably and much faster.

My inside knowlege of the structure of compound Apple Event descriptors
comes from Mr. Apple Event Manager himself, Ed Lai.

This library has not, however, been extensively tested. (See the disclaimer
below.)

What Are All Those Files?

Here’s what you get:
Release Notes Notes on the latest release.
AEStream doc This document.
AEStream.o The library itself, in MPW format.
AEStream.h C header file
AEStream_CPlus.h C++ header file. C++ users can #include this file or

AEStream.h; either way, this file will be read.

How About Access From Pascal?

As far as I know, there’s no reason why you couldn’t call this library from
Pascal, whether the MPW or THINK variety. All you need to do is write a
Pascal header equivalent to AEStream.h. (Keep in mind that all the
functions have use C calling conventions.) I haven’t provided you such a
header because my Pascal expertise is pretty rusty and I’m not sure I’d
get the syntax right. If you’d like to send me your Pascal header for
inclusion in the next release, feel free…

The AppleEvent Builder/Printer

The AppleEvent Stream Library

Disclaimer

THIS SOFTWARE HAS NOT BEEN PAINSTAKINGLY TESTED BY APPLE’S
RUTHLESSLY EFFICIENT QUALITY ENGINEERS. NEITHER APPLE COMPUTER,
INCORPORATED, NOR THE AUTHOR OF THIS SOFTWARE MAKE ANY LEGALLY
BINDING CLAIM THAT THIS SOFTWARE WILL DO ANYTHING IN PARTICULAR
BESIDES USE UP VALUABLE SPACE ON A CD OR HARD DISK. IN THE EVENT
THAT YOUR USE OF OR INABILITY TO USE THIS SOFTWARE RESULTS IN A
VISITATION FROM MACSBUG, DAMAGE TO OTHER SOFTWARE OR HARDWARE,
THE EXPLOSION OF YOUR MACINTOSH IN A SHOWER OF SPARKS (AS SEEN ON
STAR TREK®) OR INDEED THE END OF WESTERN CIVILIZATION AS WE KNOW IT,
YOUR ATTEMPTS TO ATTACH BLAME ONTO APPLE COMPUTER, INCORPORATED
OR THE AUTHOR OF THIS SOFTWARE WILL BE EXPENSIVE AND UNSUCCESSFUL.
HAVE A NICE DAY.

The AppleEvent Builder/Printer

The AppleEvent Stream Library

AEStream Functions

Opening and Closing a Stream

OSErr AEStream_Open(AEStreamRef s)

AEStream_Open opens the stream structure pointed to by s as a new, empty stream. You must do
this before calling any other AEStream functions. For example:

AEStream myStream;
err= AEStream_Open(&myStream);
// more stream calls...

OSErr AEStream_Close(AEStreamRef s, AEDesc *desc)

AEStream_Close closes the stream. If desc is NIL, the data in the stream will be disposed with
no questions asked. (Use this if you need to abort due to an error.) Otherwise, the finished
descriptor will be copied into the AEDesc pointed to by desc. If the descriptor is not finished, the
error code errAEStream_BadNesting will be returned.

After closing a stream, you can re-open it with AEStream_Open and re-use it.

Writing Simple Descriptors

▲ Warning Do not use these routines to write list or record
descriptors! You write those by using routines described in following
sections. ▲

OSErr AEStream_WriteDesc(AEStreamRef s, DescType type, void *data, Size length);

AEStream_WriteDesc appends an arbitrary block of data to the stream as a descriptor, much
like AEPutPtr.

The AppleEvent Builder/Printer

The AppleEvent Stream Library

OSErr AEStream_WriteAEDesc(AEStreamRef s, AEDesc *desc);

AEStream_WriteAEDesc appends a prepackaged Apple Event descriptor to the stream s, much
like AEPutDesc. The descriptor desc is not disposed by the call; if you don’t need it anymore,
dispose it yourself by calling AEDisposeDesc.

OSErr AEStream_OpenDesc(AEStreamRef s, DescType type, AEStreamMarkRef mark);

OSErr AEStream_WriteData(AEStreamRef s, void *data, Size length);

OSErr AEStream_CloseDesc(AEStreamRef s, AEStreamMarkRef mark);

Use these three routines if you want to write a descriptor piece by piece. First call AEStream_OpenDesc,
then call AEStream_WriteData zero or more times to write zero or more bytes of data, then call
AEStream_CloseDesc to end the descriptor.

Here’s the funny part: AEStream_OpenDesc will hand you a small data structure called a mark.
(You pass the address of an AEStreamMark and AEStream_OpenDesc writes the data to it.) You
must give this same mark data to the matching AEStream_CloseDesc call. In between, while
you’re holding onto the mark, you may not change it yourself or give it to any AEStream
routines.

Usually you use a local variable for the mark, like so:

AEStreamMark mark;
err= AEStream_OpenDesc(s, type, &mark);
err= AEStream_WriteData(s, ...);
// ...
err= AEStream_CloseDesc(s, &mark);

◆ The astute reader will have recognized that this mark scheme is AEStream’s way of getting
the caller to maintain a stack for it. Pieces of state (pointers to the start of the data) need to
be kept around while writing a descriptor, and since descriptors can be nested, so can the
state. The stream library pushes the old state information to you as a mark when a
descriptor begins, and pops it back from you when it ends. ◆

The AppleEvent Builder/Printer

The AppleEvent Stream Library

Writing Lists

OSErr AEStream_OpenList(AEStreamRef s, AEStreamMarkRef mark);

OSErr AEStream_CloseList(AEStreamRef s, AEStreamMarkRef mark);

To write a list, call AEStream_OpenList, write zero or more descriptors, then call
AEStream_CloseList. The descriptors can be simple descriptors (see above), lists or records
(see below).

◆ These functions, like AEStream_OpenDesc and AEStream_CloseDesc, ask you to hold onto a
mark for them. See the previous section for a discussion of proper mark etiquette. ◆

Writing Records

OSErr AEStream_OpenRecord(AEStreamRef s, DescType type, AEStreamMarkRef mark);

OSErr AEStream_CloseRecord(AEStreamRef s, AEStreamMarkRef mark);

To write a record, call AEStream_OpenRecord, write zero or more key descriptors (see below), then
call AEStream_CloseRecord. AEStream_OpenRecord lets you specify the type to which the record
should be coerced; use the constant typeAERecord if you want an uncoerced record.

◆ These functions, like AEStream_OpenDesc and AEStream_CloseDesc, ask you to hold onto a
mark for them. See above for a discussion of proper mark etiquette. ◆

Writing Key Descriptors For Records

▲ Warning Write key descriptors only within records, and write only
key descriptors within records, or you will end up with a bogus
descriptor that will crash the Apple Event Manager! ▲

The AppleEvent Builder/Printer

The AppleEvent Stream Library

The AppleEvent Builder/Printer

The AppleEvent Stream Library
OSErr AEStream_WriteKeyDesc(AEStreamRef s, DescType key,

DescType type, void *data, Size length);

AEStream_WriteKeyDesc writes a complete key descriptor. It’s identical to AEStream_WriteDesc
except for the key parameter which specifies the keyword to use for this descriptor.

OSErr AEStream_OpenKeyDesc(AEStreamRef s, DescType key, DescType type,
AEStreamMarkRef mark);

AEStream_OpenKeyDesc is identical to AEStream_OpenDesc except for the key parameter which
specifies the keyword to use for this descriptor. Use AEStream_CloseDesc to end the descriptor.

OSErr AEStream_WriteKey(AEStreamRef s, DescType key);

AEStream_WriteKey writes the keyword to be used by the immediately following descriptor, list
or record.

▲ Warning The next AEStream call after AEStream_WriteKey must begin
a descriptor — it must be _WriteDesc, _OpenDesc, _OpenList or _OpenRecord
— or you will end up with a bogus descriptor that will crash the Apple Event
Manager! ▲

AEStream_WriteKey is the only way to add a list or record as a field of a record. It’s also useful
if you are writing a record and want to call a subroutine that writes a descriptor:

err= AEStream_OpenRecord(s, typeAERecord, &mark);
err= AEStream_WriteKey(s, kMyKey); // this is the key
writeMyDescriptor(s); // for this descriptor
err= AEStream_CloseRecord(s, &mark);

The AppleEvent Builder/Printer

The AppleEvent Stream Library

The Header Files

Here for your convenience are printouts of the
header files as of 12 August 1991.

AEStream.h
////
//// AEStream.h A (write-only) stream for creating AE Descriptors.
//// This header file automatically uses AEStream_CPlus in C++.
////
//// By Jens Alfke ©1991 Apple Computer, Inc. All rights reserved.
////

#ifdef __cplusplus
#include "AEStream_CPlus.h" /* C++ programs use C++ header instead */

#else

// NOTE: In case of disagreement between this header and the C++ one (AEStream_CPlus.h),
// the C++ header is correct and this header needs to be fixed.

#ifndef __AESTREAM__
#define __AESTREAM__

#define errAEStream_BadNesting 13579 /* Bad descriptor/array nesting error */

typedef struct { // Mark descriptor
Size sizeIndex;
Size countIndex;

} AEStreamMark, *AEStreamMarkRef;

typedef struct { // A (write-only) stream on an AE descriptor
Handle data; // The data
Size index; // Current index (into data handle) to write to
AEStreamMark mark; // Current mark: Index to size/length field

// of open desc/array/record

The AppleEvent Builder/Printer

The AppleEvent Stream Library
Size size; // Current size of handle

} AEStream, *AEStreamRef;

The AppleEvent Builder/Printer

The AppleEvent Stream Library

OSErr AEStream_Open (AEStreamRef),
AEStream_Close (AEStreamRef, AEDesc *desc),

AEStream_OpenDesc (AEStreamRef, DescType type, AEStreamMarkRef mark),
AEStream_WriteData (AEStreamRef, void *data, Size length),
AEStream_CloseDesc (AEStreamRef, AEStreamMarkRef mark),

AEStream_WriteDesc (AEStreamRef, DescType type, void *data, Size length),
AEStream_WriteAEDesc(AEStreamRef, AEDesc *desc),

AEStream_OpenList (AEStreamRef, AEStreamMarkRef mark),
AEStream_CloseList (AEStreamRef, AEStreamMarkRef mark),

AEStream_OpenRecord (AEStreamRef, DescType type, AEStreamMarkRef mark),
AEStream_CloseRecord(AEStreamRef, AEStreamMarkRef mark),

AEStream_WriteKeyDesc(AEStreamRef, DescType key,
DescType type, void *data, Size length),

AEStream_OpenKeyDesc(AEStreamRef, DescType key,
DescType type, AEStreamMarkRef mark),

AEStream_WriteKey (AEStreamRef, DescType key);

#endif

#endif

AEStream_CPlus.h
////
//// AEStream_CPlus.h A (write-only) stream for creating AE Descriptors.
//// This header file for use with C++. Use AEStream.h with C.
////
//// By Jens Alfke ©1991 Apple Computer, Inc. All rights reserved.
////

// NOTE: This header file is for C++ programs only. If you #include "AEStream.h" in a C++
// program, you'll get this header anyway.

// NOTE: In case of disagreement between this header and the C one (AEStream.h),
// this header is correct and the C header needs to be fixed.

The AppleEvent Builder/Printer

The AppleEvent Stream Library

#ifndef __AESTREAM__
#define __AESTREAM__

#ifndef __MEMORY__
#include <Memory.h>

#endif
#ifndef __APPLEEVENTS__

#include <AppleEvents.h>
#endif

const errAEStream_BadNesting = 13579; // Bad descriptor/array nesting error

// Here are the C-style definitions, which are the actual functions implemented:

struct AEStream;
struct AEStreamMark;

extern "C" {
OSErr

AEStream_Open (AEStream&),
AEStream_Close (AEStream&, AEDesc *desc),

AEStream_WriteDesc (AEStream&, DescType type, const void *data, Size length),
AEStream_WriteAEDesc(AEStream&, const AEDesc &desc),

AEStream_OpenDesc (AEStream&, DescType type, AEStreamMark &mark),
AEStream_WriteData (AEStream&, const void *data, Size length),
AEStream_CloseDesc (AEStream&, const AEStreamMark &mark),

AEStream_OpenList (AEStream&, AEStreamMark &mark),
AEStream_CloseList (AEStream&, const AEStreamMark &mark),

AEStream_OpenRecord (AEStream&, DescType type, AEStreamMark &mark),
AEStream_CloseRecord(AEStream&, const AEStreamMark &mark),

AEStream_WriteKeyDesc(AEStream&, DescType key,
DescType type, const void *data, Size length),

AEStream_OpenKeyDesc(AEStream&, DescType key,
DescType type, AEStreamMark &mark),

AEStream_WriteKey (AEStream&, DescType key);
}

// Here are the data structures, complete with fancy C++ inline methods
// to call the above fns:

struct AEStreamMark { // Mark descriptor

The AppleEvent Builder/Printer

The AppleEvent Stream Library
Size sizeIndex;
Size countIndex;

};

struct AEStream { // A (write-only) stream on an AE descriptor
Handle data; // The data
Size index; // Current index (into data handle) to write to
AEStreamMark mark; // Current mark: Index to size/length field

// of open desc/array/record
Size size; // Current size of handle

AEStream();
~AEStream();

inline OSErr
Close (AEDesc *desc)

{return AEStream_Close(*this,desc);}

OpenDesc (DescType type, AEStreamMark &mark)
{return AEStream_OpenDesc(*this,type,mark);}

WriteData (const void *data, Size length)
{return AEStream_WriteData(*this,data,length);}

CloseDesc (const AEStreamMark &mark)
{return AEStream_CloseDesc(*this,mark);}

WriteDesc (DescType type, const void *data, Size length)
{return AEStream_WriteDesc(*this,type,data,length);}

WriteDesc (const AEDesc &desc)
{return AEStream_WriteAEDesc(*this,desc);}

OpenList (AEStreamMark &mark)
{return AEStream_OpenList(*this,mark);}

CloseList (const AEStreamMark &mark)
{return AEStream_CloseList(*this,mark);}

OpenRecord (DescType type, AEStreamMark &mark)
{return AEStream_OpenRecord(*this,type,mark);}

CloseRecord (const AEStreamMark &mark)
{return AEStream_CloseRecord(*this,mark);}

WriteKeyDesc(DescType key, DescType type, void *data, Size length)
{return AEStream_WriteKeyDesc(*this,key,type,data,length);}

OpenKeyDesc (DescType key, DescType type, AEStreamMark &mark)
{return AEStream_OpenKeyDesc(*this,key,type,mark);}

WriteKey (DescType key)
{return AEStream_WriteKey(*this,key);}

};

The AppleEvent Builder/Printer

The AppleEvent Stream Library

The AppleEvent Builder/Printer

